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Almtraet-The calculation of heat transfer in furnaces is usually based on coarse approximations of tem- 
perature and emissivity in the combustion chamber. This paper suggests a method suitable for machine 
computation of the heat transfer from flames and gases to the walls of a furnace. A theoretical derivation 
of the basic equation is made and the simplifications necessary for execution of the calculation in acceptable 
time are discussed The patterns of temperature and flame. emissivity are described by means of simple 
functions, a mathematical model. Experiments were carried out in an experimental furnace of simple 
geometry using one oil-burner in order to check the accuracy of the theoretical assumptions. Mcasure- 
ments of flame and gas temperature, flame emissivity, wall heat flux and exterior measurements necessary 
for the heat balance of the furnace were done. The measurements of temperature and emissivity define the 
mathematical model. 

The heat transfer from flame and gases (including the contribution due to reflexion, non-cold surfaces 
and convection) was calculated at four different loads of the furnace and compared with the heat flux 
measurements. The difference between measured and calculated heat flux, due to errors of measurements 

and calculations, was less than about 15 per cent of the total heat flux. 

NOMENCLATURE g, unit vector ; 
area of surface ; s, so, Sl, points on a line in the direction 
constants, equations (16) and (12) ; ofs; 
constants, equations (20) and (19) ; T, temperature ; 
halfwidth of the combustion V, volume ; 
chamber ; x3 Y, z, coordinates ; 
constant ; Ax, Ay, AZ, side of the elements ; 
side of an element ; 
black body emissive power ; Greek symbols 
intensity of radiation ; a, half of the jet angle ; 
coefficient of absorption ; 8, emissivity ; 
coefficient of emission, coefficient PP reflectance ; 
of extinction ; % energy emitted from a volume 
length or characteristic dimension ; element ; 
energy received by the radiation 6, angle of incidence ; 
pyrometer ; 1, wavelength ; 
hemispherical radiative flux ; 1, constant in equations (16) and 
distance from the emitting element (17); 
to the receiving element ; u cos 8; 
steplength along R ; 0, Stephan-Boltzmann constant 
radius ; 5.669 x lo-’ W/m2 OK4 ; 
radius vector ; 5 optical depth ; 
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@, ‘escape factor’ ; 

Q, solid angle ; 

Subscripts 

i,j, I, volume elements ; 

A, surface elements ; 

M, adiabatic surface ; 
N, along R; 
b, black body ; 

2, wavelength ; 

Y, gas. 

INTRODUCTlON 
IN ORDER to make an exact calculation of the 
radiation from flames and gases in a furnace it is 
necessary to know the temperature, the distri- 
bution of emitting and absorbing material and 
its emitting and absorbing capacity. It is possible 
to derive the theoretical equations describing 
combustion, flow and energy distributions in 
the space of the combustion chamber, but it is 
impossible to solve them, for instance, the 
coupling between the velocity field and the 
energy field (where the radiation is included) 
gives a non-linear integro-differential equation 
in three dimensions. Besides, the constants 
included in the different expressions are not 
always well known. 

Without solving the above mentioned equa- 
tions it could however be possible to draw 
certain conclusions about the functioning of the 
furnace by means of the similarity theory. Such 
work has been done mainly in the Soviet Union 
(Konakov [l], Gurvich [2]), but also by others, 
e.g. [3, 4-j. However, the number of dimension- 
less relations thus obtained is so great that 
coarse simplifications must be done in order 
to draw any practical conclusions from them. 
Usually the analysis ends up with a relation 
between two temperatures, where the reference 
temperature is the adiabatic flame temperature 
or the gas temperature at the exit of the com- 
bustion chamber, and a dimensionless number 
containing some quantities defining the pro- 
cess. This is the outlook of most of the equa- 
tions reviewed in [5]. Mean-values of tempera- 

ture and emissivity are used to describe the 
radiation heat transfer. Sometimes a limited 
approach is made and only the flow of gases in 
a certain type of furnace is described in terms of 
dimensionless numbers [6, 71 and from these, 
conclusions are drawn about heat transfer. 

Hottel and co-workers [8, 91 calculated the 
heat flux distribution and the temperature field 
in gas-fired cylindrical furnaces with homo- 
geneous gas composition for different assumed 
flow patterns and burning rates. They divided 
the volume of the combustion chamber and the 
surrounding surfaces into zones (38 zones) and 
made a heat balance on each zone. By solving 
the non-linear simultaneous equations resulting, 
the temperature of each zone was obtained. 
These temperatures were used to calculate the 
wall heat flux distribution. 

Gunther and Hering [lo] have tried to use 
the method mentioned above, but they have not 
reached a result, the accuracy of which is com- 
patible with the effort of using it, mainly on 
account of insufficient knowledge of the progress 
of combustion and the distribution of the com- 
bustion products in space. In the present 
calculation, concerning luminous flames these 
difficulties remain the same and moreover the 
local emissivity of luminous. turbulent 
diffusion flame is little known. If a sufficiently 
accurate calculation of the burning rate and the 
distribution of combustion products could be 
made, the temperature field and the distribution 
of emissivity could be obtained. At present, 
however, it seems to be an easier and more 
direct approach for radiation calculations to 
assume a temperature and an emissivity pattern 
from the general outlook of the burner arrange- 
ment and the geometry of the furnace. 

THEORETICAL BASS 

The radiative transfer in the direction of a 
vector s within the element of solid angle dQ 
may be written for an absorbing and emitting 
medium 

dl 

iii 
= ‘I - K,l 
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where I is the intensity of radiation, 
K, is the coefficient of absorption, 
q is emitted energy from an element con- 
fined by ds and da. 

The integration of equation (1) in the direction 
of s from s,, to s gives the intensity in s 

Z(s) = Z(s,) exp [-%, 41 

+ i ZI(SJ exp [ -&, 41 dsl (2) 

where so < s1 < s 

and r(so, s) = j K,ds. 
SO 

In a furnace the absorbing and emitting medium 
is confined within the walls and the radiative 
flux from the medium and from the walls to a 
point s on the wall is 

q(s) = j Z(s) cos 8 dB (3) 
R=2n 

where 8 is the angle of incidence of a beam of 
radiation, and the position coordinate is des- 
cribed by a radius vector r, and 

cos 8 cos 80 
cos 8 dSJ = -i;-;F dA’ 

cos 8 ds, d8 = E”tedV’ 
I 

Ir - rllL 
where dA’ is a surface element on the bounding 

surface A 
dV’ is a volume element of the volume of 
the furnace V 
B. is the angle by which the radiation 
leaves the emitting surface. 

The total irradiation on a surface element on the 
wall is given by equations (2) and (3) 

q(r) = s cos 8 cos e. 
Z(r,) exp [ - $ro, r)] ---2- dA’ 

If - roJ 
A 

(4) 

here 
4+(ro) I(r,) = -y 

where q+ is the total flux leaving 
element 
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the surface 

q+ =&Eb+pq (5) 

where E is the emissivity of the surface 
p = 1 - E is the reflectance of the surface 
q is, as above, incident radiation 
E, is the black body emissive power of 
the surface. 

Equation (4) is the integral equation of radiative 
transfer which is to be used under certain 
assumptions in the following calculation. 

APPROXIMATIONS AND ASSUMPTIONS 

In order to-solve equation (4) without too 
much computational effort certain simplifica- 
tions will be introduced. 

1. The enclosure of the furnace will be assumed 
to consist of a finite number of adiabatic sur- 
faces, e.g. refractory surfaces and of water 
cooled furnace walls which are black and cold. 

At an adiabatic surface, the flux incident on 
the surface must be equal to the flux leaving the 
surface 

q+ =q. 

Then, according to equation (5), q+ = E, in this 
case. As the cold part of A does not contribute 
in the integration, I(r,) in the first integral of 
equation (4) becomes equal to E&r and the 
equation is no longer an integral equation, but 
a sum of integrals. Errors due to the cold wall 
approximation are negligible in a water-cooled 
furnace, whereas the deviation of wall emissivity 
from unity might influence the result of the 
calculations. (This will be discussed in a later 
section.) 

2. Kirchhoffs law is valid. Then r~ = KZ, 
$o;;sEZ.&/rr)] and K = K* K is the coefficient 

This is not exactly correct when radiation 
emitted from a volume element with the tem- 
perature T1 is absorbed in another volume 
element with the temperature T, if Tl # T2. 
However, the radiation emitted from a volume 
element of high capacity of emission is mostly 
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absorbed by neighbauring elements with high 
capacity of absorption and the temperature 
difference between these elements is not so 
large (due to the similar character of the fields 
of emittive capacity and temperature). 

3. The radiation from flames and gases is 
assumed to be grey. This is an important 
simplifying approximation. It can be made due 
to the fact that most of the radiative transfer 
occurs in the luminous flame, which consists 
mainly of soot particles of the size of about 
O*Ol+OB urn [ 111. In this case the scattering may 
be neglected [ 121. The luminous flame is 
surrounded by gases consisting mainly of CO,. 
H,O and N,. The assumption of a grey flame is 
valid as long as the gases are treated as grey 
gases. In the case of gases, the calculation of 
radiative transfer is dependent on the correct 
choice of a mean beam length. This choice is 
rather approximate as the form of the gas 
envelope is irregular. However, the contribution 
from the gas-filled parts is small compared to 
that from the luminous part of the flame, and an 
estimate of the mean beam length valid in the 
largest gas-filled space will do. A grey-clear gas 
approximation according to Hottel [9] would 
give a better description of gas emissivities, but 
cannot fit into the equations theoretically 
derived. The above equations are derived for 
monochromatic radiation although the index A 
(wavelength) has been omitted. The equations 
will be the same for quantities integrated over 
the whole spectrum for grey radiation if a suit- 
able mean-value for K can be found. If K, is 
constant along ds, the monochromatic emissivity 
is defined by 

ai. = 1 - exp(-K,ds) (6) 

and the grey emissivity will be 

K, is wavelength dependent in luminous flames 
and vari<s according to K, = CA-" where c is a 
constant and n is close to unity [ 111. Equation (7) 
has been solved graphically and it yields 
practically the same result as is obtained by 
substituting the emission mean wavelength at 
temperature T(emission mean wavelength [ 131 
is defined by &., Eb 1 T = 0.411 cm “K) in 
equation (6) [ 111. 

Thus, for grey medium 

F = 1 - exp(-Kds) 

and K is a function of temperature and con- 
centration of the radiating medium. This is an 
energy-weighted mean emisssivity and it will be 
applied also for gases. 

4. Applying these assumptions, the integrals 
in equation (4) can be expressed in form of 
sums of finite surface and volume elements. As 
most combustion chambers have a rectangular 
shape, a Cartesian system of coordinates .x, y, z 
will be used. Each volume element of the size 
of D3 = Ax. Ay + AZ and each surface element 
D2 will be assigned a temperature and a value 
of K or E, and the element will be considered 
homogeneous. This is a form of solution which 
is easy to carry out on a digital computer and 
the time of computation can be weighted against 
the accuracy requirements of the calculation. 

Owing to the finite size of the volume ele- 
ments, self-absorption in an element has to be 
accounted for. This is done by means of an 
‘escape-factor’ that expresses the relation be- 
tween the radiation leaving a homogeneous 
element and the radiation produced in the 
element. The calculation of this coefficient @ has 
been performed by Hottel and Cohen [B] and the 
result is shown in Fig. 1. Equation (4) can now be 
written 
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I j I 

x E&ix, Yj, ~1) * ew [- cK,AR] 
N 

IZI - z*J 
x ~ AxAyAz (8) 

ICR3 

KD 

o.el I I I 
FIG. 1. Escape factor @ for emission from a cube of edge D 
filled with medium of an absorption coefficient K [8]. 

Here 
E, = aT4 
cr = Stephan-Boltzmann constant, 5.669 x 

10e8 W/m’, OK4 
M = number of adiabatic surfaces 
i, j and 1 = number of Ax, Ay, Az 
R = (r - rLJor R = Ir - roj 
R2 = (XA -XJ2 + (ye - yj) + (ZA - 21)~ 

XA, Y_4, z, = coordinates of the receiving 
element 

r(ri, r) = & RNAR 

AR is the step-length along R 
N is the number of AR along R, N = R/AR 

COS g = L%2!! 
R 

coseo J%zd* 
R 

In equation (8) the surfaces M are perpendicular 
to the side walls (zy-surfaces) and situated at 
xM The surfaces could of course have any 
position and the equation is easily modified 
according to the requirements. 

5. The heat flux 4 in any point xA, yA, z, on the 
wall of the furnace can now be calculated if the 
temperature of the refractory surfaces and the 
functions 

K = K(x,y,z) (9) 

T = T(x, Y, 4 (10) 

are known. 
The shape of the functions (9) and (10) depend 

on many factors characteristic for the furnace. 
performance, ultimately, flow pattern, mixing 
rate, combustion rate and distribution of com- 
bustion products. The easiest way of defining 
the functions would be to assume constant mean 
values K = const and T = const which are 
valid over the whole combustion chamber as 
was discussed in the introduction. This would, 
however, mean an unnecessarily coarse approxi- 
mation. 

A one-dimensional variation along an axis 
situated in a suitable way in the combustion 
chamber would be a better approximation. 

K, = const .fr(x) (11) 

To = const . g1 (x) (12) 

Here const means some constant to be defined, 
and f(x) and g(x) are functions of x. 

An even better description of the actual con- 
ditions in a combustion chamber would be 
obtained by a function which accounts for the 
variation of the quantities T and K also in 
planes perpendicular to the x-axis 

R = Ko *_f(y, 4 

T= T,.dxz) 
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These functions might also depend on s. which 

is better to write 

T = T, . g*(x, y. z) 

In this way the fields of T and K in the space 
limited by the walls of the combustion chamber 
can be written 

K = const, .f;(x) .fi(.u, y, Z) (13) 

T = const, . gI(.x). gZ(x, y, z). (14) 

The equations (13) and (14) together with equa- 
tion (8) now form a mathematical model which 
can be used for calculations of radiative transfer 
in a combustion chamber, preferably filled 
mainly by luminous flames. The accuracy of the 
model depends on how well the functions f and 
g with respective constants will describe the 
real T and K patterns in the combustion 
chamber, provided that the above assumptions 
do not seriously influence the accuracy of the 
calculations. 

The x-axis will be positioned in the direction 
of the flames, for instance coinciding with the 
axis of the central flame or in some other 
suitable symmetry position and thus the jr and 
g1 functions represent the behaviour of the 
flame properties from the burner along the axis 
of the flame. The fi and g2 functions represent 
the distribution of flame properties across the 
flames and are approximatively repetitive in the 
case of many flames. fi and g1 could be straight 
lines or exponential series (one or two terms will 
be sufficient) and the fi and g2 could be simple 
exponentials or sine-functions. The type of 
function depends on the type of burner and 
burner arrangement. A detailed definition of the 
functions may be made by defining the con- 
stants included in the functions by assumption 
and/or by experiment. Further, the best 
approach to the problem would be to define 
dimensionless functions so that experiments 
could be extended by means of similarity laws. 

EXPERIMENTAL VERIFICATION 

An experimental furnace of simple geometry. 
equipped with one burner and with a combus- 
tion chamber which is accessible to measure- 
ments, is a suitable arrangement for trials m 
order to verify the reliability of the above 
assumptions and derivations. As these experi- 
ments were carried out to check the accuracy of 
the theoretical derivations, quite a lot of 
measurements were made. the only simplifying 
assumption, except those accounted for above. 
being that of symmetry around the tlame axis 
(coinciding with the centre line of the com- 
bustion chamber). 

Experimental arrangements 
The experimental furnace consists of a hori- 

zontal water-cooled chamber of square cross- 
section and a length: side ratio of 6 : 1. On the 
side walls there are observation openings. The 
burner is mounted in the centre of one of the end 
surfaces, where a refractory material is applied 
(Fig. 2). 

I 

Burner end Furnace exit 

Foci. 2. Experimental furnace. 

The experiments were run at four heat input 
rates: 110, 84, 60 and 47 1 oil/h. These runs 
are called lA, 2A, 3A, 4A and similar runs B, 
C and D were made to investigate the repeata- 
bility. The working conditions of the furnace 
(except the heat input rate) were kept as constant 
as possible during the four runs and measure- 
ments enabling heat-balance calculations for the 
complete furnace were done. The temperature 
field and the heat-flux on one side-wall were 
measured with calibrated suction pyrometers 
and calibrated heat-flux meters of the conduction 
plug type respectively. The integrated extinction 
coefficient K could be measured in the same 
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points as the temperatures by means of a 
sensitive vacuum thermopile, mounted in a 
device which was introduced into the flame, thus 
registering the emission of a layer of the flame 
thin enough to be considered homogeneous and 
large enough not to be influenced by the appara- 
tus (in this case 45 mm). The thermopile was 
kept at a constant temperature by water-cooling 
and the flame layer was limited on the side of the 
thermopile by nitrogen, flushed through the 
instrument and sucked out through the orifice 
which defines the beam of radiation to the receiv- 
ing surface of the thermopile. The opposite side 
of the flame layer was limited either by a hot 
background, the temperature of which could 
be measured, or by a cold black-body back- 
ground. In the later case the flame was prevented 
from entering the background by means of nitro- 
gen tilling the backgroundcone and being sucked 
out at the limiting orifice of the background 
(Fig. 3). 

where Q is measured by the instrument and the 
constant depends on the geometry and calibra- 
tion of the instrument. E, is obtained from the 
temperature measurements. The term [l - exp 
(-KD)] is the emissivity of a flame layer of the 
thickness D. 

Results of the measurements 
The results of the measurements which will 

be used to define the functions (13) and (14) 
are presented in Fig. 4, and the heat flux measure- 
ments which are used to check the calculations 
are plotted in the diagrams of Figs. 10 and 11. 

Choice of a model 
Generally, the axial variation of flame proper- 

ties (11) and (12) can be represented by 
exponential functions 

T, = AT(e-&X/L. _ e-A12x/L) (16) 
K, = &(e-“““lL _ ,-n22x’L) (17) 

! :i 

RG. 3. Radiation pyrometer with cold black-body back- 
ground. 

(a) Radiation pyrometer. 1. Vacuum thermopile. 2. Orifices. 
3. Channels for cooling-water. 4. External sheath of the gas 
channel. 5 Holder for the thermopile. 6. Channels for N,. 
(b) Background, water cooled and supplied with N, in the 
same manner as the pyrometer, introduced into the flame 
from the opposite side of the funace. 7. Background cone. 
8. Gas channels. (c) pyrometer and background in working 
position. 

Experiments have shown the cold black- L is a characteristic length (the length of the 

body instrument to be the most reliable and this furnace) and AT, A, and A are constants to be de- 

instrument was used during the trials presented 
hned 

. 
here. K is obtained from an equation derived The second term determines the value close to 

by integrating equation (1) and the result is the burner and could be omitted in the present 

Q = const (1 - emELD)Eb 
type of flame where the narrow part of the flame 

(15) close to the burner gives a rather small contri- 
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FIG. 4. The distribution of temperature and emissivity m a 
horizontal plane through the centre line of the furnace. 

(The first four sections of the furnace are shown.) 

bution to the heat flux on the wall. However, to 
show the influence of the term, it will be retained 
in the T, function. The K-field is not very well 
known close to the burner, where the soot 
particles are to a great extent mixed with oil 
drops which are not completely burnt, and 

Y 

500 - 
Measured q I A 

+2A 
o3A 
a4A 

----- According to equatmn (16) 

0-m 
m 

FIG. 5. Temperature along the flame axis (x-axis). 

readings are difficult. Owing to the above men- 
tioned facts, in equation (17) the second term 
may as well be omitted. With a suitable selection 
of constants Ar., A, and i the corresponding 
curves will give a good approximation of the 
measured points, Figs. 5 and 6. The constants 
are compiled in Table 1. The maximum and 
minimum values of the fields will be discussed 
below. 

0 I 2 3 4 5 6 
m 

FIG. 6. Absorption coefficient along the flame axis (x-axis). 

In a free turbulent jet that issues from a 
nozzle into the open air the lateral temperature 
and concentration profiles of the jet medium 
assumes exponential forms which are similar 
over the whole jet if expressed in a dimensionless 
form [14]. According to [15] a similar distribu- 
tion may approximately be continued even if the 
jet is confined by walls. This cannot of course be 
immediately applied to a turbulent diffusion 
flame issued from a burner of a certain design 
in a confined space of a certain geometry. The 
burner gives a distribution of the fuel sprayed 
into the combustion chamber, which depends 
on the construction of the burner, and which 
is certainly different from that of a free jet. 
The walls of the combustion chamber disturb 
the similarity of the lateral distributions and 
limit the amount of air available to diffuse into 
the jet. thus causing recirculation. 
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However, for a large class of burners an expo- 
nential distribution will provide a sufficiently 
accurate approximation for heat transfer cal- 
culations. 
Assume 

T K 
-EC--_=e - Wb)Z 
To Ko 

where T = (y2 + z’)* is a variable radius 
0 < r < b. in Fig. 7. 
b=x*tgo!andO<b<b,andclishalfofthe 
jet-angle. 

FIG. 7. Schematic representation of the jet. 

In Figs. 8 and 9 equation (18) is fit to the measured 
values and it is seen that the best fit is 

i I I 

0 O-I 0.2 0.3 f 

(YW)vZ 

IA 

I I I 
0 0.1 0,2 o-3 0. 

(y%z5+4 

i 
4 

T -- = 

7’6 
(19) 

FIGS. 8 and 9. Lateral distribution of temperature and 
absorption coefficient. K/K, and T/T, are represented as 
functions of (y2 + z’)* for different x. The points are 
measured values. The broken lines represents equations 

(19) and (20). 

K 2 2 

_ = q, _& _!__t-:__ 

KO (x + 1ooo)2 
GO) 

Table 1. 

Trial A, I,, Iz,, I& AK &, BR 

1A 1570 O-85 30 6.0 0.01 3-1 71.9 
Note that the K-held is broader than the tern- 

it 
1570 090 30 9-7 0.01 3.7 71.9 

perature field. The temperature and K-field are 1570 1.10 42 11.1 0.01 4.8 71.9 
shown with dotted lines in Fig 4. 4A 1.570 1.30 42 11.1 0.01 5.5 71.9 
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Limiting assumptions 
The temperature field is described by equations 

(16) and (19). This model does not, however. 
take the recirculation ofgases into consideration. 
Due to recirculation, hot gases are brought back 
to the burner end of the furnace and equation 
(19) gives values of gas temperature which are 
too low around the jet close to the burner. Here, 
the limiting assumption, that the gas temperature 
of the exit of the furnace is minimum gas tem- 
perature all over the furnace, will be a sufficiently 
good approximation. 

As is seen from Fig. 6, the measured values of 
K tend to approach asymptotically a value of 
about 0.001 mm- ‘. This corresponds to gas 
radiation from pure gases of the temperature 
(900-700°C) and composition (12-14 :,0 CO, 
and H,O) in question and a radiation path 
length of the measuring instrument; the soot 
particles have burnt out. This is in accordance 
with Hottels charts for total gas radiation 1131 
where 

%D = 1 _ e-KD 

&ga iS the gas emiSSiVity according to [13] for a 
gas layer of D = 45 mm which was used in the 
measurements. Thus K > 0.001 means pre- 
dominantly grey flame radiation and K N 0.001 
means gas radiation for a layer of the thickness 
of D. As the mean beam length in the gas filled 
parts of the furnace is much longer than D, 
K = 0.001 will be too large and an average mean 
beam length corresponding to K = 0.00034 
mm-’ for the very irregular gas volumes sur- 
rounding the luminous flame will be assumed. 
K = 0*00034 is in this case the minimum value 
of the K-field calculated with equations (17) and 

(20). 
This is an important approximation in the 

calculation of gas radiation which has to be 
maintained until a wavelength-dependent calcu- 
lation can be done within a reasonable time of 

computation. 

RESULTS 

The total amount of heat received by the walls 

of the combustion chamber (as measured by the 
heat-flux meters, calibrated for incident radia- 
tion) is estimated by a graphical integration and 
compared with the total amount of heat absorbed 
by the walls (calculated knowing the mass flow 
and temperature rise of the cooling water of the 
furnace). This comparison gives an effective 

“absorptivity” of the walls of 0.80 (the four trials 
are within 22.5 per cent of this value). 

In this”absorptivity” the influence on the heat 
transfer by the thin layer of soot deposited on 
the walls is also included. An approximative 
calculation of the effect of the layer of soot indi- 
cates that in this case (thickness 0.551.0 mm) the 
actual absorptivity is close to 09 which is a 
value commonly used in heat-transfer calcula- 

tions of combustion chambers, e.g. [13]. How- 
ever. in the case of the grey radiation approxi- 
mation the re-radiated flux from the surface of 
the layer of soot may be considered as reflected 
radiation and this will be done below, where the 
reflected radiation will be composed by re- 
radiation and reflexion from the walls corres- 
ponding to the “absorptivity” of 0.80. 

Thus reflected radiation might play an essential 
role in the transfer of heat in the furnace par- 
ticularly close to corners where the walls are 
exposed to each other and not shadowed by 
absorbing material of the flame. The temperature 
field, however, is not influenced. as it is known 

u priori. 
The calculation of heat flux is carried out in 

two steps. First the contribution to the wall 
heat flux from the flame is calculated by means of 
equations (Xl, (13) and (14). The additional contri- 
bution to the heat flux by convection from the 
gases is estimated using the conventional 

methods and is found to be small (in the order 
of 2 per cent) compared to heat flux by radiation. 

The reflected flux. leaving the surfaces, is 
estimated to 20 per cent of the calculated heat 
flux from flame and convection knowing the 
wall absorptivity. The first summation part of 
equation (8) and the equation (131 now gives 
the heat flux on the walls due to reflection in the 
neighbouring walls and absorption in flame 
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and gases in between. This calculation should be 
repeated with the new heat flux obtained, and so 
on. This would mean a simulation of the integral 
equation of radiation (4) but one reflection gives 
a sufficiently good estimation, as the reflected 
parts of the total heat flux on the wall is only 
5-7 per cent of the total incident heat flux 
at y = 0. As assumed, the points at y = kO.25 
on the side wall receive more than the points at 
y = 0. 
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FIGS. 10 and 11. Comparison between calculated and 
measured heat-flux on the wall. 

Figures 10 and 11 show a comparison be- 
tween calculated heat flux (from the ffame, from 
the refractory surface, from reflection on the 
neighbouring walls and due to convection) and 
the measured values. 

It is seen that the main deviation of 15 per cent 
is at trial IA. A review of the sources of error 
leads to the conclusion that the main reason for 
the differences, if possible errors of measurement 
are excluded, is the evident fact that the mathe- 
matical model is only an approximation of a 
rather irregular turbulent flame. 

DISCUSSION AND CONCLUSION 

It is most probable that the errors due to the 
simplification of the theoretical considerations 
are of a negligible importance in the class of 
heat transfer problems treated here. In many 
cases even the black-wall approximation is 
su~~ient, for instance, for parts of walls situated 
far from neighbouring surfaces. 

The main difficulty lies in describing the flame 
characteristics using a simple mathematical 
model, and the results are dependent on the 
accuracy of the model. In a practical case it is 
of course not possible to define the temperature 
and K-fields as closely as have been done here 
by measurements, but when the geometrical 
arrangement and burner design are known, the 
general picture of the mathematical expressions 
is given and a few measurements or estimates wili 
be sufficient to define a model. By changing 
the model or the geometry of the furnace, 
investigations of heat transfer can be carried out 
which are considered necessary for the construc- 
tion of the furnace. 
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RAYONNEMENT A PARTIR DE FLAMMES ET DE GAZ DANS UNE CHAMBRE DE 
COMBUSTION A PAR01 FROIDE 

R&rune-Le calcul du transport de chaleur dam les foyers est habituellement base sur des approximations 
gross&es de la temperature et de l’emissivitt dans la chambre de combustion. Cet article suggbre une 
methode convenable pour calcul a la machine du transport de chaleur a partir de flammes et de gaz vers 
les parois d’un foyer. Une demonstration theorique de l’bquation de base est faite et les simplifications 
ntcessaires pour l’execution du calcul dam un temps acceptable sont discutees. Les distributions de tem- 
perature et d’emissivitb de la flamme sont d&rites au moyen de fonctions simples, comme modele mathema- 
tique. Des experiences ont Ctt effect&es dam un foyer de forme simple en employant un bfileur ii petrole 
afin de verifier la precision de hypotheses thtoriques. Les mesureS des temperatures de la flamme et due gaz, 
de l’bmissivite de la flamme, du flux de chaleur parietal ont et& faites ainsi que des mesures exttrieures r&es- 
saires pour le bilan de chaleur du foyer. Les mesures de la temperature et de l’emissivitb definissent le 
modele mathematique. 

Le transport de chaleur a partir de la flamme et des gaz (en y incluant les contributions dues a la reflexion, 
aux surfaces non froides et a la convection) a Ctt calcule pour quatre charges differentes du foyer et compare 
aux mesures du flux chaleur. La difference entre les flux de chaleur calcules et mesurts, due aux erreurs de 

mesure et de cacul, etait inferieure a environ 15 pour cent du flux de chaleur total. 

STRAHLUNG VON FLAMMEN UND GASEN IN EINER KALTWAND-VERBRENNUNGS- 
KAMMER 

Zusammenfassung-Die Berechnung des Warmetibergangs in Heinzkesseln beruht tiblicherweise auf 
groben Schatzungen der Temperaturen und der Emissionsverhlltnisse in der Brennkammer. In dieser 
Arbeit wird ein Verfahren zur numerischen Berechnung des Wiirmetibergangs von der Flammen und 
Gasen an die Wande des Ofens dargelegt. Die grundlegenden Gleichungen und die Vereinfachungen, die 
fiir eine ertrlgliche Rechenzeit notwendig sind, werden abgeleitet. Der Verlauf der Temperaturen und 
der Emissionsverhiiltnisse der Flammen werden mit einfachen Funktionen beschrieben. An einenr Ver- 
suchsofen einfacher Geometrie, geheizt mit einem olbrenner, wurden Versuche durchgefiihrt um die 
Genauigkeit der theoretischen Annahmen zu priifen. Gemessen wurden die Flammen- und Gastempera- 
turen, Emissionsverhaltnis der Flammen, Warmestrom an der Wand, ferner Messungen ausserhalb fur 
die Wlrmebilanz des Ofens. Die Messungen der Temperaturen und der Emissionsverhaltnisse bestimmen 
das mathematische Modell. 

Der Wtimeiibergang von Flammen und Gasen (einschliesslich des Beitrags der Reflexion, nicht-kalter 
Oberflachen und der Konvektion) wurde fiir vier verschiedene Belastungen des Ofens berechnet und 
mit den gemessenen Warmestromen verglichen. Der Unterschied zwischen berechneten und gemessenen 
WLrmestrBmen info& der Fehler der Messungen und der Rechnung lag unter 14 Prozent des gesamten 

Wlrmestroms. 
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I/IBAYYEHklE OT IIJIAMEHIil H l?A30B B KAMEPE CI'OPAHBH C 
XOllOJJHblMkl CTEHKAMW 

AmowqisI-Packet TennooBMeHa B ne'iax 06b1s~o 6asHpyeTcn Ha rpy6b1x npa6naHteHmx 

0 TeMnepaType H H3JIyqaTeJIbHOti CnOCO6HOCTH B KaMepe CrOpaHHR. B AaHHOfi CTaTbe 

npeAJIaraeTcR MeTOn, yA06HbIfi AJIH MaIIIllHHOrO paNeTa TennOO6MeHa OT n3IaMeH II ra3OB K 

CTeHKaM neW%. TeOpeTWieCKH BbIBORElTCFl OCHOBHOe ypaBHeHHe, a TaKXEe paCCMaTpHBaIOTCH 

ynpOJQeHHH, HeO6XOfiHMbIe RJIR BbIIIOJIHeHHFI PaCYeTOB. c nOMOxQbIO npOCTbIX @yHKI@i II 

MaTeMaTWIeCKOti MOAeJIII OnHCbIBaeTcR TeMnepaTypHoe nOJIe IS H3JIyYaTeJIbHaFi CnOCO6HOCTb 

nJIaMeHH. qTO6bI TIpOBepPITb TO'YHOCTb TeOpeTWIeCKElX AOnyWeHd, npOBOAUJIMCb 3Kcnepw 

MeHTbI B 3KCnepllMeHTaJIbHOt new npoCToi-4 KoH~Itrypa~HH c OAHOt ropeJIKofi. H3MepRJInCb 

TemepaTypbI nnaMeHH if raaa, I13JlyYaTeJlbHa2i CnOCO6HOCTb IIJlaMeHH, TenJlOBOti nOTOK Ha 

CTeHKe, BHeIIIHfIH 06naCTb, YTO HeO6XOnHMO AJIfl TenJIOBOPO 6aJIaHCa ne'm. H3MepeHm 

TeMnepaTypbIMH3JIyYaTeJlbHOfi CnOCO6HOCTHHBIIJIYICb OCHOBO~AJII~CO~A~HMRM~T~M~TH~~CKOZ~ 

Mo~enrn. 

Tennoo6meH nJIaMeHEl 14 ra30B (C y9eToM BJIHRHHR OTpameHm, HarpeTbIx nosepxHocTefi 

M KOHBeKqliH) paCcWTbIBaJIcH AJIfi YeTbIpex pa3JIWIHbIX Harpy3oK new EI CpaBHHBanCH c 

I43MepeHHF‘MEl TenJIOBorO nOTOKa. Pa3JIHWe MelKAy ki3MepeHHbJM I4 paCCYI4TaHHbIM TenJIOBbIM 

nOTOKOM 38 CYeT nOrpeIIIHOCTH I13MepeHkiti II paCseTOB npllMepH0 Ha 15% MeHbIIIe o6qero 
TenzoBoro noToKa. 


