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Abstract—The calculation of heat transfer in furnaces is usually based on coarse approximations of tem-
perature and emissivity in the combustion chamber. This paper suggests a method suitable for machine
computation of the heat transfer from flames and gases to the walls of a furnace. A theoretical derivation
of the basic equation is made and the simplifications necessary for execution of the calculation in acceptable
time are discussed. The patterns of temperature and flame emissivity are described by means of simple
functions, a mathematical model. Experiments were carried out in an experimental furnace of simple
geometry using one oil-burner in order to check the accuracy of the theoretical assumptions. Mgasure-
ments of flame and gas temperature, flame emissivity, wall heat flux and exterior measurements necessary
for the heat balance of the furnace were done. The measurements of temperature and emissivity define the
mathematical model.

The heat transfer from flame and gases (including the contribution due to reflexion, non-cold surfaces
and convection) was calculated at four different loads of the furnace and compared with the heat flux
measurements. The difterence between measured and calculated heat flux, due to errors of measurements

- and calculations, was less than about 15 per cent of the total heat flux.

NOMENCLATURE S, unit vector;

A, area of surface; 5,850,813, points on a line in the direction
Ag, Ay,  constants, equations (16) and (12); of s;
By, By,  constants, equations (20) and (19); T, temperature ;
b, halfwidth of the combustion v, volume;

chamber; X, ¥,z coordinates;
c, constant ; Ax, Ay, Az, side of the elements;
D, side of an element ;
E,, black body emissive power ; Greek symbols
1, intensity of radiation; o, half of the jet angle ;
K, coefficient of absorption; g, emissivity ;
K, coefficient of emission, coefficient o, reflectance ;

of extinction; n, energy emitted from a volume
L, length or characteristic dimension ; element ;
0, energy received by the radiation 0, angle of incidence;;

pyrometer ; A, wavelength ;
q, hemispherical radiative flux; 2, constant in equations (16) and
R, distance fronr the emitting element 17n:

to the receiving element ; T8 cos 0,
AR, steplength along R; o, Stephan—Boltzmann constant
r, radius; 5669 x 1078 W/m? °K*;
T, radius vector T, optical depth;
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P, ‘escape factor’;
Q, solid angle;
Subscripts

i, 1, volume elements;;

A, surface elements;

M, adiabatic surface;

N, along R;

b, black body;

A, wavelength ;

g, gas.
INTRODUCTION

IN ORDER to make an exact calculation of the
radiation from flames and gases in a furnace it is
necessary to know the temperature, the distri-
bution of emitting and absorbing material and
its emitting and absorbing capacity. It is possible
to derive the theoretical equations describing
combustion, flow and energy distributions in
the space of the combustion chamber, but it is
impossible to solve them, for instance, the
coupling between the velocity field and the
energy field (where the radiation is included)
gives a non-linear integro-differential equation
in three dimensions. Besides, the constants
included in the different expressions are not
always well known.

Without solving the above mentioned equa-
tions it could however be possible to draw
certain conclusions about the functioning of the
furnace by means of the similarity theory. Such
work has been done mainly in the Soviet Union
{Konakov [1], Gurvich [2]), but also by others,
e.g. [3, 4]. However, the number of dimension-
less relations thus obtained is so great that
coarse simplifications must be done in order
to draw any practical conclusions from them.
Usually the analysis ends up with a relation
between two temperatures, where the reference
temperature is the adiabatic flame temperature
or the gas temperature at the exit of the com-
bustion chamber, and a dimensionless number
containing some quantities defining the pro-
cess. This is the outlook of most of the equa-
tions reviewed in [5]. Mean-values of tempera-

ture and emissivity are used to describe the
radiation heat transfer. Sometimes a limited
approach is made and only the flow of gases in
a certain type of furnace is described in terms of
dimensionless numbers [6, 7] and from these,
conclusions are drawn about heat transfer.

Hottel and co-workers [8, 9] calculated the
heat flux distribution and the temperature field
in gas-fired cylindrical furnaces with homo-
geneous gas composition for different assumed
flow patterns and burning rates. They divided
the volume of the combustion chamber and the
surrounding surfaces into zones (38 zones) and
made a heat balance on each zone. By solving
the non-linear simultaneous equations resulting,
the temperature of each zone was obtained.
These temperatures were used to calculate the
wall heat flux distribution.

Giinther and Hering [10] have tried to use
the method mentioned above, but they have not
reached a result, the accuracy of which is com-
patible with the effort of using it, mainly on
account of insufficient knowledge of the progress
of combustion and the distribution of the com-
bustion products in space. In the present
calculation, concerning luminous flames these
difficulties remain the same and moreover the
local emissivity of  luminous. turbulent
diffusion flame is little known. If a sufficiently
accurate calculation of the burning rate and the
distribution of combustion products could be
made, the temperature field and the distribution
of emissivity could be obtained. At present,
however, it seems to be an easier and more
direct approach for radiation calculations to
assume a temperature and an emissivity pattern
from the general outlook of the burner arrange-
ment and the geometry of the furnace.

THEORETICAL BASIS
The radiative transfer in the direction of a
vector s within the element of solid angle d2
may be written for an absorbing and emitting

medium
4 k1 (1)
ds
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where I is the intensity of radiation,
K, is the coefficient of absorption,
n is emitted energy from an element con-
fined by ds and dQ.
The integration of equation (1) in the direction
of s from s, to s gives the intensity in s

I(s) = I(so) exp [—(so, 8)]
+ jo n(s,) exp [ —(sy, s)] ds, 2
where 5, < 5; <5
and 1(sy,8) = j K ds.

In a furnace the absorbing and emitting medium
is confined within the walls and the radiative
flux from the medium and from the walls to a
point s on the wall is

gis) = | I(s)cos8dQ 3)
2=2r

where @ is the angle of incidence of a beam of

radiation, and the position coordinate is des-

cribed by a radius vector r, and

cos 8dQ = _09§_9_cgs_gg dA4’
[F — o)
cosfds, dQ = E)EE%
[r —r,
where dA’ is a surface element on the bounding
surface A

dV' is a volume element of the volume of
the furnace V
0, is the angle by which the radiation
leaves the emitting surface.
The total irradiation on a surface element on the
wall is given by equations (2) and (3)

q(r) = S I(ry) exp [ —1(ry, 1)] (5":_9__":‘%’9 dA’
] o
+ S nir,)exp [ —(r,, )] _CPE_B_QK @)
J Ir —ryf?
here
4 (o)

I(ry) = 1c
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where ¢* is the total flux leaving the surface
element

q" =¢E, + pq ®)]

where ¢ is the emissivity of the surface
p = 1 — ¢is the reflectance of the surface
q is, as above, incident radiation
E, is the black body emissive power of
the surface.
Equation (4) is the integral equation of radiative
transfer which is to be used under certain
assumptions in the following calculation.

APPROXIMATIONS AND ASSUMPTIONS

In order to solve equation (4) without too
much computational effort certain simplifica-
tions will be introduced.

1. The enclosure of the furnace will be assumed
to consist of a finite number of adiabatic sur-
faces, e.g. refractory surfaces and of water
cooled furnace walls which are black and cold.

At an adiabatic surface, the flux incident on
the surface must be equal to the flux leaving the
surface

9" =q.

Then, according to equation (5), g* = E, in this
case. As the cold part of A does not contribute
in the integration, I(r,) in the first integral of
equation (4) becomes equal to E,/m and the
equation is no longer an integral equation, but
a sum of integrals. Errors due to the cold wall
approximation are negligible in a water-cooled
furnace, whereas the deviation of wall emissivity
from unity might influence the result of the
calculations. (This will be discussed in a later
section.)

2. Kirchhoff’s law is valid. Then n = KI,
[ory = K(E,/m)] and K = K. K isthe coefficient
of emission.

This is not exactly correct when radiation
emitted from a volume element with the tem-
perature T; is absorbed in another volume
element with the temperature T, if 7 # T,.
However, the radiation emitted from a volume
element of high capacity of emission is mostly
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absorbed by neighbouring elements with high
capacity of absorption and the temperature
difference between these elements is not so
large (due to the similar character of the fields
of emittive capacity and temperature).

3. The radiation from flames and gases is
assumed to be grey. This is an important
simplifying approximation. It can be made due
to the fact that most of the radiative transfer
occurs in the luminous flame, which consists
mainly of soot particles of the size of about
0-01-0-08 um [11]. In this case the scattering may
be neglected [12]. The luminous flame 1s
surrounded by gases consisting mainly of CO,.
H,0 and N,. The assumption of a grey flame is
valid as long as the pases are treated as grey
gases. In the case of gases, the calculation of
radiative transfer is dependent on the correct
choice of a mean beam length. This choice is
rather approximate as the form of the gas
envelope is irregular. However, the contribution
from the gas-filled parts is small compared to
that from the luminous part of the flame, and an
estimate of the mean beam length valid in the
largest gas-filled space will do. A grey-clear gas
approximation according to Hottel [9] would
give a better description of gas emissivities, but
cannot fit into the equations theoretically
derived. The above equations are derived for
monochromatic radiation although the index 4
(wavelength) has been omitted. The equations
will be the same for quantities integrated over
the whole spectrum for grey radiation if a suit-
able mean-value for K can be found. If K, 1s
constant along ds, the monochromatic emissivity
is defined by

g, =1—exp(-K,ds) (6)

and the grey emissivity will be

(7
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K, is wavelength dependent in luminous flames
and varies according to K, = ¢A™" where cis a
constant and nis close to unity [11]. Equation (7)
has been solved graphically and it yields
practically the same result as is obtained by
substituting the emission mean wavelength at
temperature T (emission mean wavelength [13]
is defined by Ag.5g,- 7T = 0411 cm °K) in
equation (6) [11].
Thus, for grey medium

£=1—exp(—Kds)

and K is a function of temperature and con-
centration of the radiating medium. This is an
energy-weighted mean emisssivity and it will be
applied also for gases.

4. Applying these assumptions, the integrals
in equation (4) can be expressed in form of
sums of finite surface and volume elements. As
most combustion chambers have a rectangular
shape, a Cartesian system of coordinates x, y, =
will be used. Each volume element of the size
of D3 = Ax-Ay- Az and each surface element
D? will be assigned a temperature and a value
of K or ¢ and the element will be considered
homogeneous. This is a form of solution which
is easy to carry out on a digital computer and
the time of computation can be weighted against
the accuracy requirements of the calculation.

Owing to the finite size of the volume ele-
ments, self-absorption in an element has to be
accounted for. This is done by means of an
‘escape-factor’ that expresses the relation be-
tween the radiation leaving a homogeneous
element and the radiation produced in the
element. The calculation of this coefficient ¢ has
been performed by Hottel and Cohen [8] and the
result is shown in Fig. 1. Equation (4) can now be
written

X ge Yar 24) = E E E Epm
A i Ing
x exp [ — E Ky, AR i

Nag
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Fi1G. 1. Escape factor @ for emission from a cube of edge D
filled with medium of an absorption coefficient K [8].

Here

E,=o0oT*

o = Stephan-Boltzmann constant, 5-669 x
1078 W/m?2, °K*

M = number of adiabatic surfaces

i, j and | = number of Ax, Ay, Az

-[r—r,lorR— [r -1,
= (X4 =%)* + 4 — ¥)* + (24 — 2)?

X4 Ya» 24 = coordinates of the receiving

element

T(ry,r) = ;KNAR

AR is the step-length along R
N is the number of AR along R, N = R/AR

|21 = z4]

cosf = R

[xa = x|

cosfy = R

In equation (8) the surfaces M are perpendicular
to the side walls (zy-surfaces) and situated at
xy. The surfaces could of course have any
position and the equation is easily modified
according to the requirements.

5. The heat flux g in any point x, y 4, z, on the
wall of the furnace can now be calculated if the
temperature of the refractory surfaces and the
functions

K = K(x,y,2) 9
T =T(xy,2) (10)

are known.

The shape of the functions (9) and (10) depend
on many factors characteristic for the furnace
performance, ultimately, flow pattern, mixing
rate, combustion rate and distribution of com-
bustion products. The easiest way of defining
the functions would be to assume constant mean
values K = const and T = const which are
valid over the whole combustion chamber as
was discussed in the introduction. This would,
however, mean an unnecessarily coarse approxi-
mation.

A one-dimensional variation along an axis
situated in a suitable way in the combustion
chamber would be a better approximation.

K, = const - f1(x) (11)

T, = const - g, (x) (12)
Here const means some constant to be defined
and f(x) and g(x) are functions of x.

An even better description of the actual con-
ditions in a combustion chamber would be
obtained by a function which accounts for the
variation of the quantities T and K also in
planes perpendicular to the x-axis

e

K =K, f(y,2)
T=T,-9(y,2)



190 B. LECKNER

These functions might also depend on x, which
is better to write

K = Ky foAx. . 2)

™ _— T .
£ — Ig

]

adx v 2\
Yours V. 2y

In this way the fields of T and K in the space
limited by the walls of the combustion chamber
can be written

K = constg - fi(x) fo(x, y, 2)
T = consty - gx) - g(x, y, 2).

(13)
(14)

The equations (13) and (14) together with equa-
tion (8) now form a mathematical model which
can be used for calculations of radiative transfer
in a combustion chamber, preferably filled
mainly by luminous flames. The accuracy of the
model depends on how well the functions f and
g with respective constants will describe the
real T and K patterns in the combustion
chamber, provided that the above assumptions
do not seriously influence the accuracy of the
calculations.

The x-axis will be positioned in the direction
of the flames, for instance coinciding with the
axis of the central flame or in some other
suitable symmetry position and thus the f, and
g, functions represent the behaviour of the
flame properties from the burner along the axis
of the flame. The f, and g, functions represent
the distribution of flame properties across the
flames and are approximatively repetitive in the
case of many flames. f; and g, could be straight
lines or exponential series (one or two terms will
be sufficient) and the f, and g, could be simple
exponentials or sine-functions. The type of
function depends on the type of burner and
burner arrangement. A detailed definition of the
functions may be made by defining the con-
stants included in the functions by assumption
and/or by experiment. Further, the best
approach to the problem would be to define
dimensionless functions so that experiments
could be extended by means of similarity laws.

EXPERIMENTAL VERIFICATION
An experimental furnace of simple geometry.
equipped with one burner and with a combus-
tion chamber which is accessible to measure-

ments, is a suitable arrangement for trials m
order to verify the reliability of the above
assumptions and derivations. As these experi-
ments were carried out to check the accuracy of
the theoretical derivations, quite a lot of
measurements were made. the only simplifying
assumption, except those accounted for above.
being that of symmetry around the flame axis
(coinciding with the centre line of the com-
bustion chamber).

Experimental arrangements

The experimental furnace consists of a hori-
zontal water-cooled chamber of square cross-
section and a length:side ratio of 6:1. On the
side walls there are observation openings. The
burner is mounted in the centre of one of the end
surfaces, where a refractory material is applied
(Fig. 2).

¥

71

<
P
1’ / / / / ”w[}j“““ 7}_7"{77‘

Furnoce ex:t

Burner end

FiG. 2. Experimental furnace.

The experiments were run at four heat input
rates: 110, 84, 60 and 47 1 oil/h. These runs
are called 1A, 2A, 3A, 4A and similar runs B,
C and D were made to investigate the repeata-
bility. The working conditions of the furnace
(except the heat input rate) were kept as constant
as possible during the four runs and measure-
ments enabling heat-balance calculations for the
complete furnace were done. The temperature
field and the heat-flux on one side-wall were
measured with calibrated suction pyrometers
and calibrated heat-flux meters of the conduction
plug type respectively. The integrated extinction
coefficient K could be measured in the same
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points as the temperatures by means of a
sensitive vacuum thermopile, mounted in a
device which was introduced into the flame, thus
registering the emission of a layer of the flame
thin enough to be considered homogeneous and
large enough not to be influenced by the appara-
tus (in this case 45 mm). The thermopile was
kept at a constant temperature by water-cooling
and the flame layer was limited on the side of the
thermopile by nitrogen, flushed through the
instrument and sucked out through the orifice
which defines the beam of radiation to the receiv-
ing surface of the thermopile. The opposite side
of the flame layer was limited either by a hot
background, the temperature of which could
be measured, or by a cold black-body back-
ground. In the later case the flame was prevented
from entering the background by means of nitro-
gen filling the background cone and being sucked
out at the limiting orifice of the background
(Fig. 3).
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where Q is measured by the instrument and the
constant depends on the geometry and calibra-
tion of the instrument. E, is obtained from the
temperature measurements. The term [1 — exp
(—KD)] is the emissivity of a flame layer of the
thickness D.

Results of the measurements

The results of the measurements which will
be used to define the functions (13) and (14)
are presented in Fig. 4, and the heat flux measure-
ments which are used to check the calculations
are plotted in the diagrams of Figs. 10 and 11.

Choice of a model

Generally, the axial variation of flame proper-
ties (11) and (12) can be represented by
exponential functions

TO = AT(e—lux/L _ e*}qzx/L)

KO = AK(e—lzjx/L _ e"lzzx/L)

(16)
(17)

WATER N WATER OUT

Fig. 3. Radiation pyrometer with cold black-body back-
ground.
(a) Radiation pyrometer. 1. Vacuum thermopile. 2. Orifices.
3. Channels for cooling-water. 4. External sheath of the gas
channel. 5 Holder for the thermopile. 6. Channels for N,.
(b) Background, water cooled and supplied with N, in the
same manner as the pyrometer, introduced into the flame
from the opposite side of the funace. 7. Background cone.
8. Gas channels. () pyrometer and background in working

position.

Experiments have shown the cold black-
body instrument to be the most reliable and this
instrument was used during the trials presented
here. K is obtained from an equation derived
by integrating equation (1) and the result is

Q = const (1 — e ¥P)E, (15)

L is a characteristic length (the length of the
furnace) and Ay, Ag and A are constants to be de-
fined.

The second term determines the value close to
the burner and could be omitted in the present
type of flame where the narrow part of the flame
close to the burner gives a rather small contri-
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readings are difficult. Owing to the above men-
tioned facts, in equation (17) the second term
may as well be omitted. With a suitable selection
of constants 4;, Ay and /4 the corresponding
curves will give a good approximation of the
measured points, Figs. 5 and 6. The constants
are compiled in Table 1. The maximum and
minimum values of the fields will be discussed
below.

&-FIELD
men

TEMPERATURE FIEL:
=

7777777 ACCORDING 10 EQUATIONS {1619) AND {1720}
—————— ACCORDING ™0 MEASUREMENTS

FiG. 4. The distribution of temperature and emissivity in a
horizontal plane through the centre line of the furnace.
(The first four sections of the furnace are shown.)

bution to the heat flux on the wall. However, to
show the influence of the term, it will be retained
in the T, function. The K-field is not very well
known close to the burner, where the soot
particles are to a great extent mixed with oil
drops which are not completely burnt, and
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F1G. 5. Temperature along the flame axis (x-axis).
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FiG. 6. Absorption coefficient along the flame axis (x-axis).

In a free turbulent jet that issues from a
nozzle into the open air the lateral temperature
and concentration profiles of the jet medium
assumes exponential forms which are similar
over the whole jet if expressed in a dimensionless
form [14]. According to [15] a similar distribu-
tion may approximately be continued even if the
jet is confined by walls. This cannot of course be
immediately applied to a turbulent diffusion
flame issued from a burner of a certain design
in a confined space of a certain geometry. The
burner gives a distribution of the fuel sprayed
into the combustion chamber, which depends
on the construction of the burner, and which
is certainly different from that of a free jet.
The walls of the combustion chamber disturb
the similarity of the lateral distributions and
limit the amount of air available to diffuse into
the jet, thus causing recirculation.
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However, for a large class of burners an expo-
nential distribution will provide a sufficiently
accurate approximation for heat transfer cal-
culations.

Assume

- __IE_ = g~ /b)?
K,

Sl

wherer = (y* + z?)* is a variable radius
0<r<byinFig. 7.

b = x-tga and 0 < b < by and a is half of the
jet-angle.

il (18)
] (1]
1
B=—f
tg*a
//,
" |b
é@./ X ]/

FiG. 7. Schematic representation of the jet.

In Figs. 8 and 9 equation (18} is fit to the measured
values and it is seen that the best fit is

2 2
T_ exp —B; y+z (19)
0 x?
K B vyt (20)
——— ex — A e e s e i s
Ko 0 TR T 10002

Note that the K-field is broader than the tem-
perature field. The temperature and K-field are
shown with dotted lines in Fig. 4.
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10

1} i i

Ol 02

()'?‘f-zz)'/z
FiGs. 8 and 9. Lateral distribution of temperature and
absorption coefficient. K/K, and T/T, are represented as

functions of (y*> + z3)* for different x. The points are
measured values. The broken lines represents equations

0-3 045

(19) and (20).
Table 1.

Trial Ar  Ap A B Ag Ay By
1A 1570 085 30 60 001 31 719
2A 1570 090 30 97 001 37 719
3A 1570 110 42 1111 001 48 719
4A 1570 130 42 111 00t 55 719
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Limiting assumptions

The temperature field is described by equations
(16) and (19). This model does not, however,
take the recirculation of gases into consideration.
Due to recirculation, hot gases are brought back
to the burner end of the furnace and equation
(19) gives values of gas temperature which are
too low around the jet close to the burner. Here,
the limiting assumption, that the gas temperature
of the exit of the furnace 1s minimum gas tem-
perature all over the furnace, will be a sufficiently
good approximation.

As is seen from Fig. 6, the measured values of
K tend to approach asymptotically a value of
about 0-001 mm~*! This corresponds to gas
radiation from pure gases of the temperature
(900-700°C) and composition (12-149, CO,
and H,0) in question and a radiation path
length of the measuring instrument: the soot
particles have burnt out. This is in accordance
with Hottels charts for total gas radiation [13]
where

gp=1—e"%"

g,p is the gas emissivity according to [13] for a
gas layer of D = 45 mm which was used in the
measurements. Thus K > (0-001 means pre-
dominantly grey flame radiation and K =~ 0-001
means gas radiation for a layer of the thickness
of D. As the mean beam length in the gas filled
parts of the furnace is much longer than D,
K = 0-001 will be too large and an average mean
beam length corresponding to K = 0-00034
mm ! for the very irregular gas volumes sur-
rounding the luminous flame will be assumed.
K = 0-00034 is in this case the minimum value
of the K-field calculated with equations (17) and
(20).

This is an important approximation in the
calculation of gas radiation which has to be
maintained until a wavelength-dependent calcu-
lation can be done within a reasonable time of
computation.

RESULTS
The total amount of heat received by the walls

B. LECKNER

of the combustion chamber (as measured by the
heat-flux meters, calibrated for incident radia-
tion) is estimated by a graphical integration and
compared with the total amount of heat absorbed
by the walls (calculated knowing the mass flow
and temperature rise of the cooling water of the
furnace). This comparison gives an effective
“absorptivity™ of the walls of 0-80 (the four trials
are within 425 per cent of this value).

In this “absorptivity” the influence on the heat
transfer by the thin layer of soot deposited on
the walls is also included. An approximative
calculation of the effect of the layer of soot indi-
cates that in this case (thickness 0-5-1-0 mm) the
actual absorptivity is close to 09 which 15 a
value commonly used in heat-transfer calcula-
tions of combustion chambers, e.g. [13]. How-
ever. in the case of the grey radiation approxi-
mation the re-radiated flux from the surface of
the layer of soot may be considered as reflected
radiation and this will be done below, where the
reflected radiation will be composed by re-
radiation and reflexion from the walls corres-
ponding to the “‘absorptivity™ of 0-80.

Thusreflected radiation might play an essential
role in the transfer of heat in the furnace par-
ticularly close to corners where the walls are
exposed to each other and not shadowed by
absorbing material of the flame. The temperature
field, however, is not influenced. as 1t is known
a priori.

The calculation of heat flux is carried out in
two steps. First the contribution to the wall
heat flux from the flame is calculated by means of
equations (8),(13) and (14). The additional contri-
bution to the heat flux by convection from the
gases is estimated using the conventional
methods and is found to be small (in the order
of 2 per cent) compared to heat flux by radiation.

The reflected flux. leaving the surfaces, is
estimated to 20 per cent of the calculated heat
flux from flame and convection knowing the
wall absorptivity. The first summation part of
equation (8) and the equation (13) now gives
the heat flux on the walls due to reflection in the
neighbouring walls and absorption in flame
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and gases in between. This calculation should be
repeated with the new heat flux obtained, and so
on, This would mean a simulation of the integral
equation of radiation (4) but one reflection gives
a sufficiently good estimation, as the reflected
parts of the total heat flux on the wall is only
5-7 per cent of the total incident heat flux
at y = 0. As assumed, the points at y = +0-25
on the side wall receive more than the points at
y=0

] T T T
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Fies. 10 and 11, Comparison between calculated and
measured heat-flux on the wall.

Figures 10 and 11 show a comparison be-
tween calculated heat flux (from the flame, from
the refractory surface, from reflection on the
neighbouring walls and due to convection) and
the measured values.

It is seen that the main deviation of 15 per cent
is at trial 1A. A review of the sources of error
leads to the conclusion that the main reason for
the differences, if possible errors of measurement
are excluded, is the evident fact that the mathe-
matical model is only an approximation of a
rather irregular turbulent flame.

DISCUSSION AND CONCLUSION

It is most probable that the errors due to the
simplification of the theoretical considerations
are of a negligible importance in the class of
heat transfer problems treated here. In many
cases even the black-wall approximation is
sufficient, for instance, for parts of walls situated
far from neighbouring surfaces.

The main difficulty lies in describing the flame
characteristics using a simple mathematical
model, and the results are dependent on the
accuracy of the model. In a practical case it is
of course not possible to define the temperature
and K-fields as closely as have been done here
by measurements, but when the geometrical
arrangement and burner design are known, the
general picture of the mathematical expressions
is given and a few measurements or estimates will
be sufficient to define a model. By changing
the model or the geometry of the furnace,
investigations of heat transfer can be carried out
which are considered necessary for the construc-
tion of the furnace.

ACKNOWLEDGEMENT

This work was supported partly by the Swedish Technical
Research Council.

REFERENCES

1. P. K. Konakov, S, S. FiMoNov and B. A. KHRUSTALRY,
Heat transfer in steam boiler combustion chambers,
Izdatel’stvo Rechnoi Transport, Moscow (1960),

2. A. M. GuURrvicH, Standard Method for Heat Calculation
of Furnaces edited by A. M. GURrvVICH and N. V.,
KuznNetsov. Gosenergoizdat, Moscow (1958).

3. C. H. YLanD, Application of the similarity theory on the
radiation in furnaces, CTH-handl. 135, (Trans. of
Chalmers Univ. of Technol.), Gothenburg (1953).

4. ). M. Beer, The significance of modelling, J. Inst. Fuel
39, 466-473 (1966).



196

5.

10.

B. LECKNER

A. M. GODRIDGE, Heat transfer in the furnace chamber
of pulverized-fuel-fired water-tube boilers, J. Inst. Fuel
40 300-309 (1967).

. A. CraYA and R. CurTET, Sur I’évolution d’un jet en

espace confiné, C.r. Lebd. Séanc. Acad. Sci., Paris 241,
621-622 (1955).

. M. W. THRING, The Sciences of Flames and Furnaces,

p. 446. Chapman & Hall, London (1962).

. H. C. Hotrer and E. S. CoHEN, Radiant heat exchange

in a gas-filled enclosure: allowance for nonuniformity of
gas temperature, A.1.Ch.E. JI 4, 3-14 (1958).

. H. C. HotreL and A. F. SaroFiM, The effect of gas flow

patterns on radiative transfer in cylindrical furnaces,
Int. J. Heat Mass Transfer 8, 1153-1169 (1965).

R. GUNTHER and S. HerING, Mathematisches Modell
zur Berechnung der Wiarmeabgabe von nichtleuchtenden

11.

12.

Strahiflammen in Feurriumen, Brennst.-Warme-Kraft
20, 200-205 (1968).

M. W. THRING, P. J. FOsTER, . A. MCGRATH and J. S.
AsHTON, Prediction of the emissivity of hydrocarbon
flames, Conf. Int. Dev. Heat Transfer. Part IV, pp.
796-803, Mech. Engrs., London and ASME (1961).

V. R. StuLL and G. N. Prass, Emissivity of dispersed
carbon particles, J. Opt. Soc. Am. 50, 121-128 (1960).

. H.C. HorTEL, Radiant heat transmission, in Heat Trans-

mission edited by W. H. McApams. McGraw-Hill,
New York (1954).

. J. O. Hinze and B. G. v. d. HEGGE ZINEN, Transfer of

heat and matter in the turbulent mixing zone of an
axially symmetrical jet, Delft Publication 100 (1948).

. G. ABRAMOVICH, The Theory of Turbulent Jets. Cam-

bridge, Mass. (1963).

RAYONNEMENT A PARTIR DE FLAMMES ET DE GAZ DANS UNE CHAMBRE DE
COMBUSTION A PAROI FROIDE

Résumé—Le calcul du transport de chaleur dans les foyers est habituellement basé sur des approximations
grossiéres de la température et de I'émissivité dans la chambre de combustion. Cet article suggére une
méthode convenable pour calcul 4 la machine du transport de chaleur & partir de flammes et de gaz vers
les parois d’un foyer. Une démonstration théorique de ’équation de base est faite et les simplifications
nécessaires pour 1’éxécution du calcul dans un temps acceptable sont discutées. Les distributions de tem-
pérature et d’émissivité de la flamme sont décrites au moyen de fonctions simples, comme modéle mathéma-
tique. Des expériences ont été effectuées dans un foyer de forme simple en employant un briileur a pétrole
afin de vérifier la précision de hypothéses théoriques. Les mesures des températures de la flamme et due gaz,
de ’émissivité de la flamme, du flux de chaleur pariétal ont été faites ainsi que des mesures extérieures néces-
saires pour le bilan de chaleur du foyer. Les mesures de la température et de 1’émissivité définissent le

modéele mathématique.

Le transport de chaleur  partir de la flamme et des gaz (en y incluant les contributions dues a la réflexion,
aux surfaces non froides et 4 la convection) a été calculé pour quatre charges différentes du foyer et comparé
aux mesures du flux chaleur. La différence entre les flux de chaleur calculés et mesurés, due aux erreurs de

mesure et de cacul, était inférieure & environ 15 pour cent du flux de chaleur total.

STRAHLUNG VON FLAMMEN UND GASEN IN EINER KALTWAND-VERBRENNUNGS-

KAMMER

Zusammenfassung— Die Berechnung des Wirmeiibergangs in Heinzkesseln beruht iiblicherweise auf
groben Schitzungen der Temperaturen und der Emissionsverhéltnisse in der Brennkammer. In dieser
Arbeit wird ein Verfahren zur numerischen Berechnung des Wirmeiibergangs von der Flammen und
Gasen an die Winde des Ofens dargelegt. Die grundiegenden Gleichungen und die Vereinfachungen, die
fiir eine ertrigliche Rechenzeit notwendig sind, werden abgeleitet. Der Verlauf der Temperaturen und
der Emissionsverhiltnisse der Flammen werden mit einfachen Funktionen beschrieben. An einem Ver-
suchsofen einfacher Geometrie, geheizt mit einem Olbrenner, wurden Versuche durchgefiihrt um die
Genauigkeit der theoretischen Annahmen zu priifen. Gemessen wurden die Flammen- und Gastempera-
turen, Emissionsverhiltnis der Flammen, Wirmestrom an der Wand, ferner Messungen ausserhalb fiir
die Wirmebilanz des Ofens. Die Messungen der Temperaturen und der Emissionsverhéltnisse bestimmen

das mathematische Modell.

Der Wirmeiibergang von Flammen und Gasen (einschliesslich des ‘Beitrags der Reflexion, nicht-kalter
Oberflichen und der Konvektion) wurde fiir vier verschiedene Belastungen des Ofens berechnet und
mit den gemessenen Wirmestromen verglichen. Der Unterschied zwischen berechneten und gemessenen
Wirmestrémen infolge der Fehler der Messungen und der Rechnung lag unter 14 Prozent des gesamten

Wirmestroms.



197

RADIATION IN A COLD WALL COMBUSTION CHAMBER

N3AYYEHUE OT HJAMEHUW U TA30B B KAMEPE CIOPAHUA C
XOIOOIHBIMU CTEHKAMU

AHHOTAIMA—PacyueT TeIo00MeHa B Ieyax OOBYHO (6a3MpyeTcA HA FPYGHIX MPUOIMMKEHUAX
0 TemmepaType U H3JAy4YaTelbHOH CHOCOGHOCTM B Kamepe cropanusa. B paHHOK crartee
IpejjiaraeTcA MeTOf, YXOOHBI A MAIIMHHOrO PacyeTa TemIoo0MeHa OT ITaMeH U rasoB K
cTeHKam me4yu, TeopeTmyeCcKu BEHIBOGUTCA OCHOBHOE YPABHEHUE, & TAKME PACCMATPUBAIOTCH
YOpOIeHus, HeoOXOMuMEe AJIA BHIONHEHHA pacueToB. C HOMOIIBIO MPOCTHIX QPYHKLME U
MaTeMaTU4ecKoll MOAENN ONMMCHLIBAETCHA TEMIEPATYPHOE MMO0Je M M3JIydaTeJbHaA CIOCOGHOCTL
nnaMenn. UToGH 1poBepuTH TOYHOCTH TEOPETUYECKUX RONYIIEHUHE, MPOBOAMIHUCH BKCIEPU-
MEHTHl B HKCIEPIMEHTAIbHOA Neuu NpocToit KOHPUIYPALMH C OJHON ropesKolt, Wsmepsmucey
TeMnepaTyphl IJIAMeHH U rasa, Mady4aTelbHas cNOCOOHOCTD IIaMEHM, TEILIOBON MOTOK HA
CTeHKE, BHEUIHAA O0JaCTh, YTO HEOOXOMMMO IJIA TemmoBoro GamaHca meuu. Vsmepenus
TeMIIepaTyPH U U3y YaTelIbHOMN CHOCOGHOCTY ABUINCH OCHOBOM 1A CO3NaHUA MATEM ATHYECKOM
MOJeJn,

TenmooGMen NJaMenu M TasoB (C Y4eTOM BIMSHMA OTPAMKEHHHA, HATPETHX MOBEPXHOCTelH
1 KOHBEKI[HH) PACCYUTHIBANCA [JIA 4eTHpeX PA3jJMUHEIX HArPY30K MeYd M CPABHMBAJICA C
U3MEPeHUsIMHU TEILUIOBOTO NOTOKA. Pasnuume Mesly M3MEPEHHEIM U PACCUMTAHHBIM TETIIIOBBIM
TIOTOKOM 3a CUeT IOTPEIIHOCTH M3MepPeHMit M pacueToB mpuMmepHo Ha 159 MeHbIe o6mwero

TEMJIOBOTO MOTOKA.



